Future Directions in Acute Myeloid Leukemia and Acute Lymphoblastic Leukemia

Heidi Trinkman, PharmD.
Clinical Pharmacy Specialist
Cook Children’s Medical Center
Fort Worth, Texas

Disclosures

- Speaker's Bureau: Jazz Pharmaceuticals, BTG
- External Reviewer for LexiComp

Objectives

- Describe current remission/cure rates for Acute Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML)
- Identify patients at high risk for relapse
- Examine opportunities to improve cure rates in high risk patients with ALL and AML
- Analyze novel agents with potential to improve cure rates in high risk patients with ALL and AML
Background

<table>
<thead>
<tr>
<th>Year</th>
<th>Therapeutic Advance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948</td>
<td>“Transient remissions” induced by aminopterin</td>
</tr>
<tr>
<td>1967</td>
<td>Combination chemotherapy and effective CNS-directed therapy cure ~50% of patients</td>
</tr>
<tr>
<td>1981</td>
<td>Relapse treatment improves outcomes</td>
</tr>
<tr>
<td>1982</td>
<td>Triple intrathecal therapy with methotrexate (MTX), hydrocortisone (HC), and cytarabine may be substituted for prophylactic cranial irradiation in some patients</td>
</tr>
<tr>
<td>1983</td>
<td>Primrose weekly high-dose asparaginase improves outcomes</td>
</tr>
<tr>
<td>1991</td>
<td>Interim-dose MTX with leucovin rescue decreases systemic and testicular relapses</td>
</tr>
<tr>
<td>1995</td>
<td>Inherited genetic polymorphism in gene encoding thiopurine methyltransferase influence mercaptopurine toxicity</td>
</tr>
<tr>
<td>1996</td>
<td>Methotrexate methotrexate dose improves outcome</td>
</tr>
<tr>
<td>2000</td>
<td>Effective systemic and intrathecal chemotherapy can eliminate the need for prophylactic cranial irradiation in all patients</td>
</tr>
</tbody>
</table>

10/10/17

"Current" Survival Rates

<table>
<thead>
<tr>
<th>5-Year Survival Rate, Age 0–19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
</tr>
<tr>
<td>Acute Lymphoblastic Leukemia</td>
</tr>
<tr>
<td>Acute Myeloid Leukemia</td>
</tr>
<tr>
<td>Hodgkin Lymphoma</td>
</tr>
<tr>
<td>Non-Hodgkin Lymphoma</td>
</tr>
<tr>
<td>Brain and Spinal</td>
</tr>
<tr>
<td>Brain and CNS</td>
</tr>
<tr>
<td>Bone and Joint</td>
</tr>
<tr>
<td>Soft Tissue</td>
</tr>
<tr>
<td>Metastatic Tumor</td>
</tr>
</tbody>
</table>

Source: Surveillance, Epidemiology, and End Results (SEER) Program (seer.cancer.gov) SEER 9 area. Based on follow-up of patients into 2012.
Recent Advances

- Genetic Sequencing/Technology
- Risk Stratification
- Novel Therapeutic Approaches

- Decrease toxicity
- Improve outcomes

- Identification of prognostic factors
- Identify tumor specific targets
Recent Advances

- Genetic Sequencing/Technology
- Novel Therapeutic Approaches
- Risk Stratification
- Immunotherapy
- Cellular therapy
- New agents

Risk Stratification
- Decrease toxicity
- Improve outcomes

Identification of prognostic factors
- Identify tumor specific targets

Acute Lymphoblastic Leukemia (ALL)

- Overall cure rate close to 90% (the good news)
- Room for improvement (…the bad news)
 - 20% will relapse (OS rates between 25 and 40%)
 - Infants ~50% survival
 - ~80% MLL gene rearrangement
 - T cell leukemia
 - Decrease treatment related toxicities

Advances in ALL

- Prognostic Factors
- Risk Stratification
- Intensity Therapy
- Deescalate Therapy

Advances in ALL

Prognostic Factors
- Risk Stratification
- Intensify Therapy → Improve outcomes
- Deescalate Therapy

Previously Known Prognostic Factors-ALL
- **Diagnosis:** WBC & Age
 - WBC > 50K
 - Age < 1y or > 10y
- Immunophenotyping
 - T-Cell vs B-Cell
- Induction response
 - Early vs late
- **Cytogenetics**
 - Mixed lineage leukemia (MLL) (11q23)
 - Philadelphia chromosome
 - Hyperdiploidy (>50 chromosomes) vs hypodiploidy (<44 chromosomes)
Advances in Prognostic Factors- ALL

- Immunophenotyping
 - Early Precursor T-Cell (EPT)
- Cytogenetics (Exploded)
- Response to Therapy
 - Minimal residual disease (MRD)
 - One of the most significant predictors of relapse/refractory disease
- Adherence
 - 6-mercaptopurine

Early T Cell Precursor (ETP) ALL

- Biologically distinctive subgroup of T ALL
 - 15% of pediatric T ALL
 - Immunophenotype: CD1a-, CD8-, CD5 weak, co-expression of stem cell or myeloid markers
 - Initially thought to have poorer overall outcomes
 - UKALL 2003 demonstrated 5 yr EFS 77% (not significantly lower than non-ETP T ALL).
 - AIEOP group looked at 49 patients with ETP
 - High rates of poor response to prednisone and high rates of induction failure
 - Treated with BFM risk-stratified therapy
 - 78% maintained a complete sustained remission

World Health Organization (WHO)

2008 WHO classification of B-ALL

- B lymphoblastic leukemia/lymphoma, NOS
- B lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities
- B lymphoblastic leukemia/lymphoma with t(9;22)(q34.1;q11.2) BCR-ABL1
- B lymphoblastic leukemia/lymphoma with 11q23 rearrangements
- B lymphoblastic leukemia/lymphoma with t(1;19)(q23;p13.3) TCF3-PBX1
- B lymphoblastic leukemia/lymphoma with hyperdiploidy
- B lymphoblastic leukemia/lymphoma with hyperdiploidy
- B lymphoblastic leukemia/lymphoma with hypodiploidy
- B lymphoblastic leukemia/lymphoma with t(5;14)(q31;q32) IL3-IGH

2016 WHO classification of B-ALL

- B lymphoblastic leukemia/lymphoma, NOS
- B lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities
- B lymphoblastic leukemia/lymphoma with t(9;22)(q34.1;q11.2) BCR-ABL1
- B lymphoblastic leukemia/lymphoma with 11q23 rearrangements
- B lymphoblastic leukemia/lymphoma with t(1;19)(q23;p13.3) TCF3-PBX1
- B lymphoblastic leukemia/lymphoma with hyperdiploidy
- B lymphoblastic leukemia/lymphoma with hyperdiploidy
- B lymphoblastic leukemia/lymphoma with hypodiploidy
- B lymphoblastic leukemia/lymphoma with t(5;14)(q31;q32) IL3-IGH
- Provisional entity: B lymphoblastic leukemia/lymphoma, BCR-ABL1-like
- Provisional entity: B lymphoblastic leukemia/lymphoma with iAMP21

Examples of Molecularly Targeted Trials

<table>
<thead>
<tr>
<th>Therapeutic target</th>
<th>Potentially sensitive genotypes</th>
<th>Inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCDT1*</td>
<td>MLL rearranged</td>
<td>EPZ-5676</td>
</tr>
<tr>
<td>IDH1</td>
<td>IDH1 mutated</td>
<td>AG-221</td>
</tr>
<tr>
<td>CDK6</td>
<td>MLL rearranged</td>
<td>Palbociclib</td>
</tr>
<tr>
<td>BET proteins†</td>
<td>MLL rearranged,</td>
<td>CTX015, GSK20742</td>
</tr>
<tr>
<td>XPO1/C2RM1-1†</td>
<td>NPM1 mutated</td>
<td>KPT-330 (Selinexor)</td>
</tr>
<tr>
<td>BCL-2*</td>
<td>CYC2 mutated</td>
<td>Venetoclax</td>
</tr>
<tr>
<td>FLT3*</td>
<td>FLT3 mutated</td>
<td>Casitasib, Quizartinib, Midostaurin</td>
</tr>
<tr>
<td>C-KIT†</td>
<td>C-KIT mutated</td>
<td>Dasatinib</td>
</tr>
<tr>
<td>CD33</td>
<td>CBF leukemia</td>
<td>Gemtuzumab conjugate (Mylotarg)</td>
</tr>
</tbody>
</table>

Therapeutic target

Potentially sensitive genotypes

Inhibitor

ALL Cytogenetic Explosion

Favorable
- High-hyperdiploidy (51-65 chromosomes)
- Trisomies of 4 and 10
- ETV6-Runx1 (TEL-AML1)

Unfavorable
- Low-hypodiploidy (32-39 chromosomes)
- MLL rearrangements (KMT2A, 11q23)
- Ph+ t(9,22)
- TP53 mutations
- IKZF1 deletions
- iAMP21

iAMP21- A Cytogenetic Success Story
- Internal amplification of the AML1 gene on chromosome 21 (iAMP21)
 - Occurs in 2% childhood ALL
 - Associated with older age at diagnosis (median age 10y)
 - Lower presenting WBC (<50K) at diagnosis (NCI standard risk)
 - UKALL 5 yr EFS 29%, BFM group EFS 37%
 - UKALL 2003 trial: treated as high risk (intensified therapy)
 - 78% EFS
 - COG reported no statistical difference in EFS when stratified as high risk

Risk-Directed Therapy for Ph-Like

- **Ph-Like** (15% pediatric B-ALL)
 - Subset of B-ALL but without the BCR-ABL1 fusion
 - High incidence of IKZF1 deletions
 - More common in older children and adolescents
 - Genomic analysis of 154 patients with Ph-Like ALL
 - 90% contained kinase activating alterations involving ABL1, ABL2, CRLF2, EPOR, JAK2, PDGFRB and others
 - ABL1, ABL2, CSFIR and PDGFRB: sensitive in vitro to dasatinib
 - EPOR and JAK2 rearrangements: sensitive in vitro to ruxolitinib
 - Study of 40 pts treated with risk-directed therapy based on MRD
 - Demonstrated poor prognostic value of cytogenetics could be overcome

MRD as a Prognostic Factor in ALL

- Measured by flow cytometric detection of aberrant immunophenotypes and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR) amplification of immunoglobulin and T-cell receptor genes.
 - Can get false-negative due to clonal evolution
 - Deep sequencing methods
 - Identify evolved clonal populations
 - More precise
 - Can detect very low levels of leukemia (<0.01%)
 - Risk of relapse strongly correlates with MRD level at end of induction and end of consolidation
 - Stratify intensity of regimens based on these time points
 - UKALL 2003 study (randomized)
 - Showed intensified treatment for pts with high end of induction MRD (>0.01%) resulted in a superior EFS compared to those receiving standard chemotherapy
 - Also de-intensified therapy for non-high risk patients with low/favorable MRD
 - No significant difference in EFS
Advances in Prognostic Factors - MRD
End of induction MRD as a predictor of relapse
EFS on 9900 series COG studies by end of induction MRD

Advances in ALL Therapy
- Decrease Treatment Related Toxicity
 - Substitution of CNS-directed therapies in place of radiation
 - High dose methotrexate
 - Intrathecal chemotherapy
 - Prevention of anthracycline-associated cardiotoxicity
 - Dexrazoxane
 - Response based de-escalation of therapy

Impact of TKIs on Ph+ ALL
- Approximately 3-5% of childhood ALL
- Historically poor outcomes requiring HSCT in first remission
- European intergroup study of safety and efficacy of post-induction imatinib evaluated patients from 2004 to 2009
 - Risk directed therapy
 - 178 patients enrolled
 - 4 yr DFS of imatinib patients 75.2% vs 55.9% control (p=0.06)
Impact of TKIs on Ph+ ALL

- Dasatinib started day 15 of induction

Philadelphia Chromosome-Like ALL-TKIs

<table>
<thead>
<tr>
<th>Gene</th>
<th>Philadelphia-like</th>
<th>Philadelphia-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABL1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PML-NCO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLL-AF9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Novel Approaches to Therapy- New Agents

- Immunotherapy
 - Blinatumomab
 - Inotuzumab ozogamicin (CMC-544)
- Cellular Therapy
 - Chimeric antigen receptor (CAR) T Cells
- Tyrosine kinase inhibitors
 - Philadelphia chromosome-like ALL: Imatinib, dasatinib, ruxolitinib
 - T-Cell: nelarabine, bortezomib, clofarabine
- Infant ALL: azacitidine
Immunotherapy
- Utilizing / enhancing the anti-tumor effect of the immune system
- Limits systemic toxicities due to specific cell kill
- Targets a specific leukemic cell antigen
- Blinatumomab (CD19/CD3)
 - Due to short ½ life, drug is given as a continuous infusion over 4 weeks
 - Cytokine release syndrome (CRS)
 - Premedicate with corticosteroids
 - Tocilizumab (anti-IL-6) for treatment
 - Neurotoxicities

Blinatumomab – Bispecific T cell-engaging antibody
- Bi-specific T cell Engager (BiTE)
 - Binds CD19 (on the B Cell) and CD3 on the T Cell
 - Present on the surface of >90% of B Cell leukemias
 - Promotes upregulation of T cell activation markers and perforin-mediated cytotoxicity
 - Increases T cell proliferation
- Phase II/III studies in children (n=70)
 - 39% Achieved CR within the first 2 cycles
 - 50% achieved MRD negative status
 - Response rate was better with lower tumor burden at initiation
 - <50% bone marrow blasts: CR 56%
 - ≥50% bone marrow blasts: CR 33%

Inotuzumab Ozogamicin (INO)

- >90% B Cell ALL express CD22
- Monoclonal antibody (humanized) targeting CD22 bound to a cytotoxic agent (calicheamicin)
 - Binding to CD22 causes internalization of the molecule, DNA damage and cell death
 - Capable of targeting quiescent cells
- Retrospective analysis of 43 patients receiving compassionate use
 - 62% achieved CR
 - Common adverse effects: infection, hepatotoxicity
- 9 of 15 patients that went on to HSCT developed VOD (1 died)

Cellular Therapy

- Chimeric Antigen Receptor (CAR) T Cells
 - Adoptive immunotherapy
 - Use patient’s own effector T Cells that have been re-engineered ex vivo to inforce an immune response
 - Demonstrated long-lasting in vivo survival
 - Diffuse into bone marrow, tissues and CNS
 - Furthest along- CD19

Development of CAR T-Cells
CAR T Cell Experience in Children

- **CTL019 study (CHOP and University of Pennsylvania)**
 - 25 children and 5 adults relapsed/refractory B ALL
 - 80% CR, 67% EFS, 76% OS at 6 months
 - All patients experienced CRS
 - 27% considered severe
 - All responded to tocilizumab
- **Follow-up study 59 children and adolescents**
 - 93% CR 1 month post-infusion
 - 88% MRD negative by flow cytometry
 - 12 month follow-up
 - 58% remained in remission
 - 79% OS (34% eventually relapsed over half with CD19- clones)

Chemotherapy for Infant ALL

- **P9407 – 5 year EFS of 36%**
- **Interfant-99 – 4 year EFS of 37%**
- **AALL0631**
 - Added FLT3 inhibition with lestaurtinib with no significant improvement in EFS
- **Relapse occurs early, often during therapy**
- **Second remission is very difficult to achieve**

Epigenetic Modification

- **Novel approach involving changing the cellular environment of the malignant cells**
- **KMT2A-R ALL cells have characteristic gene expression profiles and epigenetic alterations**
 - DNA promoter hypermethylation can lead to silencing of tumor suppressor genes
 - Methylation changes can increase chemo-resistance and relapse
Azacitidine
- DNA methyltransferase inhibitor (DNMTi)
- Exposure of KMT2A-R cells in vitro to DNMTi can reverse the methylation pattern of silenced genes and induce selective cytotoxicity
- Some experience with DNMTi + chemotherapy in children but not in infants
- COG AALL15P1 Trial
 - Adding azacitidine post induction for infants with KMT2A rearrangement

Adherence Impact on Outcomes
- Adherence with 6-mercaptopurine during maintenance
 - Patients with an adherence rate of <90% have 3.9 fold increased risk of relapse
 - Risk factors for non-compliance
 - Age >12y
 - Low annual household income/Low parental education
 - Non-white race/ethnicity
 - Household structure
 - Lack of established pill taking routine

Acute Myeloid Leukemia (AML)
- Approximately 25% of all leukemia diagnosis
- Survival rates between 60% and 70%
 - Intensified chemotherapy/risk stratification
 - Supportive care strategies
 - Hematopoietic stem cell transplant
- Therapeutic regimens based on subtype
 - APML: all-trans retinoic acid (ATRA) + chemotherapy
 - -Arsenic trioxide (AAML1311)
- Unacceptable relapse rate (~1/3)
Acute Myeloid Leukemia (AML)

- Advances in Molecular Genetics
 - Identification of new genetic abnormalities
 - Clinical significance still undefined
 - Improve risk stratification
 - Identify targeted therapy
 - Identification and validation of new prognostic factors
 - Minimum residual disease (MRD)

Favorable
- t(8;21)(q22;q22)/RUNX1
- inv(16)(p13.1;q22)/CBFb-MYH11
- t(16;16)(p13.1;q22)/CBFb-MYH11
- Mutated NPM1 without FLT3-ITD
- Biallelic mutations of CEBPA
- t(1;11)(q21;q23)/MLLT11-KMT2A

Unfavorable
- t(6;11)(q27;q23)/MLLT4-KMT2A
- t(10;11)(p12;q23)/MLLT10-KMT2A
- t(10;11)(p11.2;q23)/ABI1-KMT2A
- t(6;9)(p23;q34)/DEK-NUP214
- t(8;16)(p11;p13)/KAT6A-CREBBP
- t(16;21)(q24;q22)/RUNX1-CBFA2T3
- t(5;11)(q35;p15.5)/NUP98-NSD1
- inv(16)(p13.3q24.3)/CBFA2T3-GLIS2
- t(11;15)(p15;q35)/NUP98-KDM5A
- t(3;5)(q25;q34)/NPM1-MLF1
- FLT3-ITD

Intermediate/Unknown
- t(9;11)(p12;q23)/MLLT3-KMT2A
- Other KMT2A fusions
- t(1;22)(p13;q13)/RBM15-MKL1

MRD as a predictor of outcomes in AML
- St. Jude AML02 MRD measured by flow cytometry after induction
 - MRD positive 39% 3 yr cumulative incidence of relapse vs. 17% for MRD negative
 - Relapse rate was higher in those with >1% after one course of therapy and >0.1% after two courses
- Nordic Society of Pediatric Hematology Oncology (NOPHO) study group
 - MRD Negative (1 course): EFS 65%, OS 77%
 - MRD Positive (1 course): EFS 22%, OS 51%
 - MRD Positive (start consolidation): EFS 11%, OS 28%
Impact of minimal residual disease (MRD) after induction therapy on outcomes in patients with acute myeloid leukemia.

Juvenile Myelomonocytic Leukemia (JMML)
- Approximately 90% have mutations in the RAS pathway
 - PTPN11, NRAS, KRAS, NF1 and CBL
- Azacitidine (epigenetic alteration)
 - Case reports/case series
- Tipifarnib
 - Farnesyltransferase inhibitor
 - Phase 1 trial in peds
 - 82% farnesyltransferase inhibition in leukemic blasts

Novel Therapeutic Approaches in AML
- Antigen-targeted therapies
 - Immunotherapy
 - Bispecific T-cell Engaging (BiTE) antibodies against CD33
 - Chimeric antigen receptor (CAR) T-Cells (CD33, CD123)
 - Intensification of current regimens
 - Clofarabine, sorafenib, dasatinib
 - Relapse/refractory AML: Liposomal cytarabine-daunorubicin (Vyxeos®) (AAML1421)
Liposomal Cytarabine-Daunorubicin

- Fixed combination of liposomal cytarabine and daunorubicin (5:1 molar ratio) optimal for synergistic activity
- Each unit contains 1 mg cytarabine and 0.44 mg daunorubicin
- Accumulates in bone marrow yielding higher concentrations
- Selectively taken up into leukemia cells with intracytoplasmic release of the drugs

Cellular Therapy for AML

- Bi-Specific T cell Engager (BiTE) antibody (AMG330)
 - CD33/CD3
 - Epigenetic modification to enhance CD33 expression
 - Histone deacetylase (HDAC) inhibitors
 - panobinostat
 - DNA methyltransferase (DNMT) I inhibitor
 - azacitidine

Future Directions in Acute Myeloid Leukemia and Acute Lymphoblastic Leukemia

Heidi Trinkman, PharmD.
Clinical Pharmacy Specialist
Cook Children’s Medical Center
Fort Worth, Texas
Thank you for attending this Webinar session.

For questions related to the program or obtaining continuing pharmacy education credit, please see the Activity Announcement posted on this Web site.